RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [2018-21]

B.A./B.Sc. THIRD SEMESTER (July – December) 2019 Mid-Semester Examination, September 2019

MATH FOR INDUSTRIAL CHEMISTRY (General)

Date: 18/09/2019

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

1.

Answer any three questions:

Time: 11 am – 12 noon Paper: III Full Marks: 25

[Use a separate Answer Book for each group]

Group - A

Find the angle between the chords of the curve $x^2 + y^2 = ax + by$ obtained by joining the origin

Find the locus of poles of tangents to the parabola $ay^2 + 2b^2x = 0$ with respect to the ellipse

to the points of intersection of the straight line $\frac{x}{a} + \frac{y}{b} = 1$ and the given curve.

 (3×5)

5

5

	a = b	
3.	Reduce $3x^2 + 10xy + 3y^2 - 12x - 12y + 4 = 0$ to its canonical form.	5
4.	Find the polar equation of the tangent to the conic $\frac{2}{r} = 1 - \cos \theta$ at $\theta = \frac{\pi}{2}$.	5
5.	Find the equation of the plane passing through $(1,2,3)$ and parallel to $3x+4y-5z=0$.	5
	$\underline{\mathbf{Group}} - \underline{\mathbf{B}}$	
	Answer any two questions:	(2×5)
6.	a) Define a vector space over a field.	3
	b) Examine if the set S is a subspace of \mathbb{R}^3 , where $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$.	2
7.	a) Determine k so that the set S is linearly dependent in $\ensuremath{\mathbb{R}}^3$, where	
	$S = \{(1,2,1),(k,3,1),(2,k,0)\}.$	2
	b) Find a basis for the vector space \mathbb{R}^3 , that contains the vectors $(1,2,1),(3,6,2)$.	3
8.	a) Find a basis and determine the dimension of the following subspace S of the vector space	
	$\mathbb{R}_{2\times 2}$, where $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}_{2\times 2} : a+b=0 \right\}$.	3
	b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (a_1 + a_2, 0, 2a_1 - a_2)$. Examine whether T is a linear	
	transformation or not.	2